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Phase synchronization and nonlinearity decision in the network of chaotic flows

Hayato Fujigaki and Tokuzo Shimada
Department of Physics, Meiji University, Higashi Mita 1-1-1, Kawasaki, Kanagawa 214, Japan
(Received 30 August 1996

The dynamics of a network of globally coupled chaotic flows is reduced to that of a single chaotic flow as
the result of the phase synchronization. The mechanism of the nonlinearity decision among the flows is
clarified and a simple decision rule is presented which holds in almost the entire range of the couplings and in
a wide class of nonlinear flows. The key observation is that final attractors represent the “motion of the center
of mass” of the network. The nonlinearity of the final attractors can be controlled by couplings.
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I. INTRODUCTION strength depending on the difference of angular velocities;
beyond it the phase difference does not grow overghd

The brain is a network of a huge number of chaotic neubelow it the phase difference grows indefinitely. They also
rons and it is supposed that the synchronization over cells gghowed that two different flows may phase synchronize in
the network is requisite for intelligence and pattern recognithis weak sense when the difference of the two flows may be
tion (e.g.,[1,2)). In a recent papdi3] we reported an amaz- regarded as a large effective noise term as in the case of the
ing phenomenon callephase synchronizatioWe observed ~coupling of Rasler and Mackey-Glass systems.
it in a simple network of globally coupled nonlinear flows Our phase synchronizatiofthe metamorphosis and the
in which the parameters dfi, flows are set in the chaotic Phase lockingmay be regarded as an interesting case of the
regime, and othersN,=N—N;) in the periodic regime. dynamics reduction in the complex system. The global cou-

Starting from random initial values, the liké, andN, flows ~ Ping is not essential; even with the nearest-neighbor both-
way coupling we observe similar phase synchronization over

first synch_ronlze among thems_e Iv_es o f‘”f“ two cIu_st_erst,Se network. Most amazing is the fact that even the flows
one .chao.t|c and the other periodic, each with the ongnay, ;i completely distinct nonlinear parameters can phase syn-
nonlnjeanty, and theq the two clusters metgmorphoge NQronize. In this article we clarify the mechanism of this
Fwo final a_lttractors, with some mutually deC|ded_n_onhnear—reducﬁOn of the network dynamics and investigate how the
ity. The final attractors are perfectly synchronizing eachfows mutually decide their final nonlinearity. In Sec. Il we
other in the phase and their orbits are precisely similar butacapitulate some of our previous results. We in particular
different in the size and in positions in the phase space. discuss the condition for the smooth flow limit of the evolu-
Thus the phase synchronization we found concerns flowg§on of our network model. In Sec. Ill we present an intrigu-
of distinct nonlinearities and consists of two parts; the for-ing observation that the final phase-synchronizing attractors
mation of new metamorphosed attractors and the precisepresent essentially the motion of the “center of mass” of
phase locking among final attractors. Rosenblum, Pikovskyhe network. The relative motions are swept away by the
and Kurths[4] independently found a similar phenomenon overwhelming coherence over the network as a result of the
where two or many flows with the same nonlinearity syn-synchronization among the flows, which is reminiscent of the
chronize in phase even if they are given by different angulaappearance of the order parameter in the superconductor or
velocities with the difference of some few tens of percentithe Higgs condensation in particle physics. Most interest-
We should note that difference in the angular velocitiesingly the nonlinearity of the final phase-synchronizing attrac-
(Aw) only amounts to the difference in the linear contribu-tors is decided mutually among the flows by a simple deci-
tions (x;=—w;y;+---,Yi=wX;+---, i=1,2). Thus their sion rule so that the final phase-synchronizing attractors may
analysis mainly concerns flows of the same nonlinearityb€e controlled by the coupling parameters between the flows
Also there is some difference of interest between the twdgnd/or by the population ratios between unlike flows. In Sec.
works. Our main interest is the possibility of precise phasdV we conclude with some remarks on the flow-map corre-
locking between flows with completely different nonlinear spondence.
parameters, and the possibility of formation of phase-locking
states_ with new nonlinearity from them depe_nding on the Il. THE PHASE SYNCHRONIZATION
coupling weight. On the other hand, the main intereqdih
is the possibility of the phase synchronization in an extended First let us present a simple network of globally coupled
sense, rather than the precise phase locking, when flows obnlinear flows. Our model is a natural extension of the glo-
identical nonlinearities are coupled together with equalbally coupled one-dimensional map lattice by KangRpto
weight. They call it “phase synchronization” if the phase the network of flows and to the higher dimensions. As a
difference is varying but does not grow, that is, when there i€anonical example of nonlinear flow with more than one
no difference in the average angular velocities over longrvariable, let us takéN Lorenz flows and set the parameters
time. They found an interesting threshold in the couplingfor the first set of flowq (x;(t),yi(t),z(t)), i=1,... N;]
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FIG. 1. A sample result of th&-coupled two distinct Lorenz t
flows, r;=28, r,=300, and the coupling=0.3, 6=0.3, illustrat-
ing the iteration of the two steps; the evoluti¢he arrowed solid FIG. 2. The evolution of-coupled Lorenz flows in time(a)

line) and the interactiofthe arrowed dashed lindb= % P=10 for Globally coupled flowsN;=4 flows withr =28 andN,= 16 flows

both flows, and only the directly coupled variablesandx, are  with r =300, both withb= 2, P=10. Flow 2 is scaled up by factor

exhibited. The flowgcircleg are pulled to the mean fieldolid bay 3. (b) Matrix-coupled two flows[see Eq.(9)] at e=0.3 and

at the fixed rate * e by the interaction while the mean field is not g=0.2=[4/(4+ 16)]. Both from random start. The flows {a) first

affected. For the first few |terat|0r(Eﬂ) the interaction violates the form two clusters and passing the decision pr0¢ebadowed area

smoothness of the flows. After sufficient focuright) the smooth-  they metamorphose into perfectly phase-synchronizing periodic at-

ness is realized. Note the change in the scale. The numbers alofgctors similar to the final attractors of the matrix model(ti

the horizontal axis represent the iteration steps; each step takes

At=10"“. The interaction is instantaneous, but to illustrate the in-steps schematically for the variables in the case di=2.

variance of the mean field, it is represented with half-width of the|, the first step the flows evolve independently of each other

At. from different values and with distinct nonlinearity. Thus the
nonlinear evolution in the first step acts in general atea

) k o Setfocusing lensin the second step the interaction serves as a

[(i(1),yi(1),zi(1)), 1=Na+1,... ’NlH\iZ] In thezper|od|c focusing lenswith a fixed rate I e to the mean field. A

regime. ~ Typically ~we choose r=28, r®=300, fo remarks are in order here. First, the interaction in the

b=p@ =5 pm=p@=10. At each time step all flows second step preserves the value of the mean field,

first evolve independently via the flow equations,

in the chaotic regime and for the second

1 € X 1 Xi —
l — )X+ — [ — i—
Xi(t+ A1 =x,(1) + P(y;— X)) At, N2 | (ot T=g2 T=xs @
Yi(t+At) =y;(t) +(=Xizi +riX; —y;) At, This invariance of the mean field under the interaction plays
an important role in guaranteeing the continuous motion of
z(t+At)=z(t) +(xy;—bz)At, the center of mass of the network as is discussed below.
Secondly, in our two-step evolution model, the mean field
r for i=1,...N; determines the next positions of the flows directly rather than
r= r@  for i=N;+1,... N;+N,. via the velocities of the flows. This is a crucial difference
between our model and some similar network mddeb.
(i=1,...N) (1) Only in our approach can the dynamics of the network of

flows have a direct correspondence with the globally coupled

Then, they interact with each other in only one dimension vianap lattice[2]. Thirdly, although the sequence of nonlinear
their mean field. For instance, choosixdor this dimension, ~€volution and interaction is similar with that in the coupled
the interaction is given by map lattice, we couple the variables in only one dimension to
create the mean field and the variables in other dimensions
Xi—(1— €)X+ ex, (2)  are evolving under the influence of this mean field. Hence it
_ is legitimate to regard the mean fieldt) as the master sys-
wherex is the mean field, tem and the other variables as the slave sy§®#i.
N Now, let us derive a crucial condition for the smoothness
vl i 2 Xi 3) of the evolution of flows under Eq$l) and (2). For some
N< period the interaction in the second step pullsxheariables
to their mean value drastically at every iteration. But, if the
and e is the coupling strength. The network evolves repeatfocusing is operated on them sufficiently frequently, all of
ing this two-step process of nonlinear evolutidn and in-  them are soon focused around the mean vaduend the
teraction(2). We illustrate in Fig. 1 the iteration of the two change of thex; becomes compatible with or smaller than
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At. Then the invariance of under the interaction guarantees XB— (11— €)xV + e,x?,
the smoothness of the evolution xf variables to the same
extent with the smoothness of other slave variables. Let us XZ—(1—€)x @+ exY, 9
denote the time between two Poincatets asl. The focus-
ing rate during this period may be estimated as with €;=0¢,e,=(1— 0) e. This is a natural extension of the
one-way coupling model by Pecora and Carféll to both-
(1—e)TAt=ecT/AL (5 way coupling with an interpolation parametér Now we

) ) ] have the interaction described by E@g) and (8) with the
This should overcome the defocusing rate by the nonlinearmopylation ratio on one hand, and the interactié® with
ity, which is exp QmaxT) wherekn,, is the largest eigen- ihe interpolation parametey on the other hand. By simple
value of the Floquet matrix. Thus the condition that focusingarithmetic we can show these agree with each other when

works on thex; variables sufficiently may be estimated 0= 7 [3]. That is, if the reduction fron\ to 2 really occurs,
the evolution of the clusters thereafter, in particular the meta-
€—>NmaT - (6) morphosis(decision), should proceed just in the same way
At with the evolution of the simpl&l=2 matrix model with the

, o interpolation parametef set at the value of the population
After this smooth flow limit is reached we can study the . 7 of the clusters.

response of the slave systgmandz; under the influence of |, Fig. a(b) we show the evolution of the matrix-coupled
the master system For our case of t_he Lorenz flowsnaiS  N=2 model. The agreement between Fig&) 2nd 2b) is

of the order of 1 and study the region 0.08le<1, so we  remarkable, The flows of the global network in Figa2take
needAt<10°. Of course sucht is small enough so that gome time for the formation of two clusters (&2<1) and
the difference equatioll) approximates the differential - thejr evolution thereafter into the final attractors is just the
equation. With this consideration we takat=10 same with that of the two flows in Fig(1, with ¢ adjusted

throughout this article. : . B .
In Fig. 2(a) we show the evolution of the globally coupled at the population ratioy(= 5, =0.2) of theN=20 flows in

N =20 flows from random start whef¢; =4 (chaotig and Fig_i__ﬁ(a). h for simlicity divided the fl .
N, =16 (periodig. For the first period (0.2t<1) the like Il now we have for simplicity divided the flows into two

flows synchronize among themselves, forming two clustergfoups, one in the chaotic and the othe_r in the periodic re-
and, passing the decision period<1=<1.8), the two clus- gime. Everything goes the same way with the other combi-

ters metamorphose into two final attractors. Let us verify thapatc;ons, chaFotlthand ChaOt'Ctht W'kt‘h dklffsrtehnt ChaOt'CfntiSS
the first synchronizationté&1) among like flows is suffi- and so ofn. ur ermorel\\llve ave c Ef‘lc e ehcagtetht ree
ciently robust so that th&l flows really pass the decision groups, four groups .. , N groups N ows each with 1ts
stage as tightly bound two clusters. Such a test of the dyna own nonlinearity. The flows again first synchronize among

ics reduction fromN to 2 may be devised by constructing a tlrfenfl?nwst fr%m:";g cluisrt]?rs(ﬁrfc?apthfor t_henlas: z?iﬁan?hr
model of two flows representing the two clusters, respec; € etamorpnose nto final phase-synchro 9 ee,

tively. If such reduction really occurs, that is, if foyr, - - . ,N attractors. Now Iet_ us proceed o th_e targgt_in
' ' this article, namely, the analysis of the nonlinearity decision
(xDy® 2Dy for i=1,... N; in the metamorphosis.
(Xi,Yi,Z) =1 (x2 y(2 #2) -
DI OCTY ) for T=NptL L NN, lIl. THE METAMORPHOSIS
AND NONLINEARITY DECISION

holds all the time, the evolution equation reduces to Since we have verified the reduction of the dynamics of

(i) _ () (i) _ (D) the flows to the dynamics of clusters, we hereafter mainly
XP+AD=xT(O+P(yT-xTAL, consider the nonlinearity decision between two floitugo
clusterg with distinct nonlinearity. This is the study of the
second reduction from=2 to 1. (Every discussion below,
in particular the extraction of the center of mass degree of
freedom, can be extended to the case of geérBecall the
classical mechanics where the two body problem has all the
essential ingredients of thd body problem apart from the
more subtle case of integrabilifyPreviously we reported
that the population ratiaj=N4/N in the globally coupled

y(i)(H—At)=y(i)(t)+(—x(i)z(i)+ r(i)X(i)—y(i))At,
Z0(t+ At =20(t) + (xVy D —bZD) At
(i=12

and the interaction is simply

xD(1—exV+ex (i=1,2), (7)  network of flows, or equivalently the interpolation parameter
6 in the matrix-coupled two flows, serves as a control pa-
wherex is the population-ratio-weighted average, rameter of the nonlinearity of the final attractors. Now we
show that there exists a simple rule of the nonlinearity deci-
x=gxV+(1-9)x?, (8)  sion which is valid for a wide class of nonlinear flows.

In the limit 6=0 or 1 our matrix model reduces to pre-
with 7=N;/N and 1- »=N,/N. Now let us introduce an cisely the master-slave model proposed by Pecora and Car-
N=2 flow model with the evolution as given by E) and roll in their pioneering work of the chaos synchronization
with an interaction in only one dimension, [6]. (In preparing this article we find that these authors also
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suggested in another pagdé& the study of “large parameter certainly agrees with the Poincameap of the master flow in

variation” which is precisely the target of our woyk. Fig. 3(c) as the natural consequence of the r(il6). More
At #=1 the flow (clustey 1 wins and atd=0 the flow interestingly we find in Fig. @& an outstanding periodic

(cluste) 2 wins the decision gam8,6]. Thus the rule for window around 0.Z #<0.3 and also many other smaller

0~0 and6~1 may be schematically expressed windows. This shows that two chaotic flows have metamor-
_ phosed into phase-synchronizing periodic attractors at cer-
A(r®) if =1 tain values ofd. The spectrum of the periodic windows in

FrM@Fr )= Ar@) it 6~0 (100  @in Fig. 3@ precisely agrees with the spectrum of the win-
’ dows of the single flow i in Fig. 3(c). Furthermore the

. ) . distributions of the clouds in Fig.(8) at any# agree with the
with obvious symbols. For instancéy(r'")) means two ; distributions in Fig. &) at the corresponding value of
phase-synchronizing periodic attractors with nonlinearity alyhich means that the final phase-synchronizing attractors are
r(M). Surprisingly, we find that by adjusting the couplily  nothing but the attractor of the single flow at the correspond-
appropriately, it is possible to create from two chaotic flowsing T Summing up we observe that in the case of e
the phase-synchronizing two periodic attractors coupling the extended decision rul&l) holds precisely in

the form
F(C,r'YeF(C,r®)—A(P)
. o F(C,r'V=28®F(C,r'’®=200)|,

or even to create from the coupling of the two periodic flows -
the phase-synchronizing two chaotic attractors —A(r=280+2001-9)). 12

F(P,rYYeF(P,r®)—A(C). Notably the spectrum of the periodic windows in Figb3is
almost the same as that in FigcBbut the positions of the
Here we added the symb@ or P as a memento of the windows in 8 are shifted to the smalle§ direction about
nonlinearity (chaotic or periodigof the single flow(cluste) 0.15. This on one hand reveals that the decision rule holds in
F at the value of ) written to the right of it. We assert that general approximately and on the other hand indicates the

the nonlinearity decision rule in general is nontriviality of the rule. The agreement in the Lyapunov ex-
ponents between Figs(@, 3(e) (coupled flows, and 3f) (a
FIrMeF(r)|,—Ar(r,r?,9)), single flow also confirms the extended decision rule.
o Now let us clarify why the decision rule holds. We divide
r(rr@ g)~r=ort+(1-0)r?. (11)  the argument into items.

] ] ] (1) Decomposition of the variable®hen the final phase-
The rule is as follows. First, the final two phase- synchronizing attractors are formed after the metamorphosis,
synchronizing attractors are modulo a scale factor the sam@e variablex(t) andx(® have already focused around the
with the attractor of the original single flow with new non- mean valuex while the other Variab|e$,(l)’z(1)'y(2), and
linearity. Second, the decided nonlinearity parameter valug) o, oyve nonautonomously under the influencexofin
r(r.r®,6) is essentially given by the weighted averageqyqer to analyze their motion let us introduce the “center of

r. (For the network of the flows with two groups of distinct 555 variables and the relative variables just as in the clas-
nonlinearity it suffices to replace by the populatior. The  gjcal mechanics. That is

decision rule holds even for the negativeor for =1

though for then such an extension is immaterjalThis (x,y,2)= 6(xV,yD zV) + (1— 9)(x?,y? 22y,
means that by varying the parametethe whole pattern of
the attractor of the single flow in the range [r"),r(®] can (Xe,Yr,Zr) = (X D,y 2Dy — (x@ y(@ 52)) (13

be produced. The decision rul@l) is so simple that things
might look trivial. However, we should note that the fact thatSome explanation of the term “center of mass” is in order
the two flows(two cluster$ with completely distinct nonlin-  here. We have definexin Eq. (3) for the network of flows
earity synchronize in phase is already a surprise and thathich leads tox in Eq. (8) for the two clustergand thex
averaging or interpolating the nonlinearity parameters is above via the identificatiod= 7). Thesex might have been
completely new notion. called thex coordinate of the center of mass Nfflows and

Let us now present evidence for the decision rule. In Figthat of two clusters, respectively, with an assignment of a
3 we show the Poincamap of the coupled Lorenz flows for unit mass to each flow. However, we carefully called them
the whole range of the coupling with both flows set in the the mean field and the population-ratio-weighted average,
chaotic regime (=28 andr(® =200). Figures 3a) and  respectively, since they are concerned with only one of the
3(b) are for thex-coupled case and for the-coupled case, dimensions. Here we are newly definiggand z in accord
respectively, and these should be compared with the Poirwith x to define a vectorx,y,z). Hence we may now call
care map of a single Lorenz flow in Fig. (8 for re this the center of mass. We admit that the decomposition
[28,200. In Figs. 3a) and 3b) the clouds of loweruppe) above is really a simple algebraic redefinition of the vari-
points represent the Poincasection for the flow 1(2). At ables but we use the teroenter of maskereafter in order to
any value ofé the lower and upper clouds agree with eachemphasize the conceptual jump that we consider not only the
other after a scaling as the result of the phase synchronizactive variablex (active in the sense that it is used in the
tion. Around#=1(0) themaster flow is the system(2) and  model to impose the focusing on the flovimit also fictitious
around these regions the Poincanap of the final attractors y andz together. We are aware that it is rather radical to talk
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FIG. 3. The Poincarenap of two chaotic Lorenz flowsr (=28, r,=200, bz%, P=10) coupled by a matrix withe=0.3 and 6
€[0,1] [see Eq(9)], (a) x coupling,(b) y coupling, to be compared with the Poincanap of the single flow [200,28) in (c). (For the
y coupling the map of flow 2 is shifted upwards to avoid the oveyldaghe maps are sampled by the conditioh#dt=0 and
d?z/dt?=0. The periodic window spectrum ¢8) [(b)] agrees perfectlyapproximately with that of (c). The corresponding Lyapunov

exponents ind), (e), and(f) confirm the observation. See the decision rUa).

about the center of the mass of the attractors but this analogy
actually turns out vital in the discussion below. We also de-
compose ) andr® as

T=0rY+(1-0)r?,

Ar=r®—r@,

(2) The motion of the center of mas#ith these new
variables we can rewrite E@l) as
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X—x+P(y—x)At, can construct the coupled flow network not only by the cou-
pling in x but also iny. For they-coupled Lorenz flows, the
Ve y+ (=X z+1 X)At+ 0(1— 0)( — XgZr+ XgAT)At, xzterm does not satisfy the sufficient condition. However, as

(14)  Wwe find in the numerical calculation, the nonlinearity deci-
sion is approximately made following the rule in Ed.1)
Z 7+ (Xy—bz)At+ 6(1— 0)XgyRAt. with some negotiatiofthe quoted shift by~ 0.15. This can
be understood as due to the low nonlinearity in the slave
The flows (clusters evolve under the iteration of the two- dimensions. We have numerically tested various known non-

step process of the evolution and interaction. Forxtfeu- linear flows. In all cases the decision rule holds precisely
pling thexg becomes quickly of the order aft in the itera- when the sufficient condition is satisfied, and approximately
tion. Taking xx—0 in Eq. (14 we find that the terms otherwise so far as the synchronization occurs. For instance,

proportional to#(1— ) all vanish and the evolution of the the Rasler flows can be synchronized by thecoupling.
center of the massx(y,z) in the first step reduces to the The nonlinear ternxz \_/|olates the_ sufﬁm_ent condition and
evolution of the single Lorenz flow with the nonlinearity W& OPServe the negotiated decisisee Fig. 4 below The

parameter. As for the second step the invariance conditionBrusselator can be synchronized by batlandy coupling.

- 2 . . e
(4) comes into play. It assures that the center of the mas5€ nonlinear ternx”y satisfies the condition for the cou-
(x,y,Z) is not affected by the interaction. Hence the pling but violates it for they coupling. We indeed observe

(x,y,2) evolves only by just the first step in each iteration. that the rule holds precisely in the coupling but approxi-

Thus the center of the mass of the two clusters and the cent8ately in they coupling. , ,

of mass of theN flows should form the Lorenz attractor with L€t US present two more figures in order to demonstrate

nonlinearityr . how the dgmsmn rqle yvorks a_nd to mqllcate the feasibility of
(3) The motion of phase-synchronizing orbits and the deiN€ téchnical application of it. In Fig. 4 we choose the

cision rule The final two attractors X2,y ) and y-coupled Rssler model which exhibits the negotiated deci-

e sion. The bottom box represents the Lyapunov exponents in
IIhe rangec e[ 2,6.5]. The other parameteesandb are both

of mass modulo a scale factor. Hence the final attractor%;(ed at 0.2. We pick two flows, the flow 1 witb=3.5 and

must be those of the single Lorenz flow with nonlinearity "€ flow 2 withc=5.3.

. This is the explanation of the precise decision rule for the Before the couplipg both flows are in the periodi(_: regime
x-coupling case. as shown in the middle two boxes. By the coupling with

(4) The reduction from N-2 to 1. The original degree of €=0.3 and#=0.2 they should metamorphose following the

freedom of two flows(clusters was 6, and aftexg—0 it rule:
t)heecgrrri]geii ?n ttt;]ge,xy,z,yanglgmeerotation and expansion around Frissiek P,V =3.5® Frassief P, =5.3)| y— 0.~ A(C),
R™YR .

The phase synchronization, namely, the synchronizing (19
motion around similar orbits, implies that the last two free-
doms are essentially also lost. This is clearly seen in the
Lyapunov exponents in Figs.(® and 3e). There are six
eigenvalues among which three precisely agree with the ex- fJ ;
ponents of the single Lorenz flow in Fig(fBin the whole J
range ofr. They change sensitively with the variation of the
coupling # and represent the active degree of freedom of o35 =53
(x,y,2). The other exponents do not vary withand repre-
sent the nonactive degree of freedom. From the nonautono- (A ﬁi
mous evolution equations forxg,yr,zg) we can easily ﬂ JJ
verify the independence of their Lyapunov exponents from 6=02 )
0.

(5) Generic casedn the above argument we used the fact o
that xg is focused to nearly zero in the coupling. This /W

=35 =33

Y-coupled Rossler Model

V(an
S
/

0.1 T T T T

removes the terms proportional &§1— ¢) and reduces Eq. ~
(14) to the evolution equation of the single Lorenz flow at

r. The sufficient condition under which the same argument 0
works in the generic case is that the evolution equation does /\ /\/Vl
4

—
?

not have nonlinear terms in other variables than the one cho- s
sen for the coupling. In short the slave dimensions must be 2 3

linear among themselves. In the case of the above C
x-coupled Lorenz system, the nonlinear terms areand

Xy, both of which are linear ity andz. Hence the sufficient FIG. 4. An illustration of the decision rule in E¢L5). We pick
condition is satisfied and the decision rule holds preciselyiwo Rossler flowsc,=3.5¢,=5.3a=b=0.2; the attractors are
Actually the synchronization of the coupled flows can beboth periodic(middle two boxes The coupling withe=0.3 and
realized in general when the Lyapunov exponents for the=0.2 makes chaotic phase-synchronizing two attractos two
driven system are less than z¢6). For the Lorenz flows we boxes.
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Y-coupled LorenzModel a personal computer. In order to avoid the overlap of the
trajectories the attractors are constantly scrolled down in the
display. Most intriguing is the robustness of the phase syn-
chronization under the rapid variation of the couplihgSee
the change of# during the periodte[16,16.1 and t
€[28,28.2 reproduced in the little box. We tried a game to
produce the periodic attractors from two chaotic flows by
control. Watching the two phase-synchronizing attractors
dancing in the display it was quite easy to figure out the
value of  necessary, which was around 0.2. Thus in the run
for this figure we let the two flows move around freely with
0 fixed at 0.2 for the periode[16.2,28. The orbits in the
middle of the figure are the resulting periodic attractors.
The single Lorenz flow has a prominent periodic window
around  r=160. The decision rule gives
T=500+200(1— §)~170 for §=0.2 and we have certainly
caught this window in the control. How much is the decision
rule negotiated by they-coupled Lorenz flows? The
Lyapunov  exponents of these attractors are
(0,—1.46,—2.93,—8.69,—13.6,—326) and the underlined
three exponents agree with three exponents of the single Lo-
renz flow atr=165.6. While the precise rule under the suf-
ficient condition dictates the formation of the flows with
r=170 the actual attractors have-165.6. Thus the nego-
tiation is 170 165.6.

X 1,0
FIG. 5. A sample of control of phase-synchronizing two coupled IV. CONCLUSION
attractorg(solid and dashed lineg=0.3) by the coupling. Flows The dynamics of a network of globally coupled flows

1 and 2 are both chaotia.,=50, r,=200, b=5, P=10. Re-  wijth distinct nonlinearity is reduced first into that of clusters
sponding to the quick change of the coupling depicted in the littleformed by like flows by synchronization among them and
box they swiftly decide_their mutual nonlinearity by the d(_ecis_ion then further reduction occurs by the decision of the nonlin-
rule (16). At the rest period [16.2,29 they freely make periodic o iry among the clusters. The clusters metamorphose into
attractors(the middle profilé. : . . .

the final phase-synchronizing attractors which are essentially

the attractor of a single flow with mutually decided nonlin-

earity among the clusters. We have shown that the decision
where  Fressier represents the Resler flow, and rule can be written in a simple form in E¢L1). The suffi-
c~c=3.5X0.2+5.3x0.8=4.94. The single flow at cient condition for the decision rule is that the nonlinear
c~4.94 is chaotic, as can be seen in the bottom box with théerms of the flow equation are linear in the variables other
maximum Lyapunov exponenh,=0.0693. The final than the one chosen for the coupling. Even if the condition is
phase-synchronizing attractors shown in the top two boxenot satisfied the decision rule is respected with some nego-
are indeed chaotic with,,,,=0.071 and the decision rule is tiation as long as the synchronization can be realized be-
respected by two Rasler flows well even in thg coupling.  tween the flowgclusters. We have shown ample examples

In Fig. 5 we exhibit the phase-synchronizing attractors offor both cases and have demonstrated the feasibility of tech-

they-coupled Lorenz flowsd=0.3) controlled by the deci- nical application of the rule.

sion rule We close this article by pointing out that our network
model of globally coupled flows may be closely linked to the
(1) _ ) — network of globally coupled maps. Recall the intriguing fact
Frorend €1 =500® Fiorend €11 = 2001, that the flow of a dissipative system may be in the same
—Ar(r?®,r? g)), universality class with the map essentially because the Poin-

carie section of the flow becomes one dimensional due to
dissipation[8]. We have used the conditidb) to determine

At so that the focusing) is applied to the system frequently
enough and that the smooth flow limit is guaranteed after
whereF, enz Fepresents the Lorenz floyThis supplements Ax becomes very small. Thus the analysis presented in this
our previous analysis of the simpler casearticle is the dynamics in the strong focus regime where the
FlorendC,T =28)® F orend P,r =300)|,. See Fig. 2 of 3].]  dynamical reduction overwhelms the network. If, on the
Actually this figure is a record of controlling the phase-other hand,e is extremely small, as small a@(At), the
synchronizing attractors by varyingjby pressing the key of effect of interaction will not affect the smoothness of the

r(r,r@ g)=<r=or+(1-6)r?, (16)
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orbits, and the nonlinearity of the flows and the coherencen the Poincaresection. In a preliminary analysis of the
due to the interaction via the mean field will make a subtlecoupled Duffing oscillators in the universality class of the
balance on the Poincasection. In such a weak focus re- May map, we indeed observed the formation of spatial clus-
gime, the network of flows will mimic the network of maps ters. An extensive study in this regime is underway.
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