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Phase synchronization and nonlinearity decision in the network of chaotic flows

Hayato Fujigaki and Tokuzo Shimada
Department of Physics, Meiji University, Higashi Mita 1-1-1, Kawasaki, Kanagawa 214, Japan

~Received 30 August 1996!

The dynamics of a network of globally coupled chaotic flows is reduced to that of a single chaotic flow as
the result of the phase synchronization. The mechanism of the nonlinearity decision among the flows is
clarified and a simple decision rule is presented which holds in almost the entire range of the couplings and in
a wide class of nonlinear flows. The key observation is that final attractors represent the ‘‘motion of the center
of mass’’ of the network. The nonlinearity of the final attractors can be controlled by couplings.
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I. INTRODUCTION

The brain is a network of a huge number of chaotic n
rons and it is supposed that the synchronization over cell
the network is requisite for intelligence and pattern recog
tion ~e.g.,@1,2#!. In a recent paper@3# we reported an amaz
ing phenomenon calledphase synchronization. We observed
it in a simple network of globally coupledN nonlinear flows
in which the parameters ofN1 flows are set in the chaoti
regime, and others (N25N2N1) in the periodic regime.
Starting from random initial values, the likeN1 andN2 flows
first synchronize among themselves and form two clust
one chaotic and the other periodic, each with the origi
nonlinearity, and then the two clusters metamorphose
two final attractors, with some mutually decided nonline
ity. The final attractors are perfectly synchronizing ea
other in the phase and their orbits are precisely similar
different in the size and in positions in the phase space.

Thus the phase synchronization we found concerns fl
of distinct nonlinearities and consists of two parts; the f
mation of new metamorphosed attractors and the pre
phase locking among final attractors. Rosenblum, Pikov
and Kurths@4# independently found a similar phenomen
where two or many flows with the same nonlinearity sy
chronize in phase even if they are given by different angu
velocities with the difference of some few tens of perce
We should note that difference in the angular velocit
(Dv) only amounts to the difference in the linear contrib
tions (ẋi52v i yi1•••,ẏi5vxi1•••, i51,2). Thus their
analysis mainly concerns flows of the same nonlinear
Also there is some difference of interest between the
works. Our main interest is the possibility of precise pha
locking between flows with completely different nonline
parameters, and the possibility of formation of phase-lock
states with new nonlinearity from them depending on
coupling weight. On the other hand, the main interest in@4#
is the possibility of the phase synchronization in an exten
sense, rather than the precise phase locking, when flow
identical nonlinearities are coupled together with eq
weight. They call it ‘‘phase synchronization’’ if the phas
difference is varying but does not grow, that is, when ther
no difference in the average angular velocities over lo
time. They found an interesting threshold in the coupli
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strength depending on the difference of angular velocit
beyond it the phase difference does not grow over 2p and
below it the phase difference grows indefinitely. They a
showed that two different flows may phase synchronize
this weak sense when the difference of the two flows may
regarded as a large effective noise term as in the case o
coupling of Rössler and Mackey-Glass systems.

Our phase synchronization~the metamorphosis and th
phase locking! may be regarded as an interesting case of
dynamics reduction in the complex system. The global c
pling is not essential; even with the nearest-neighbor bo
way coupling we observe similar phase synchronization o
the network. Most amazing is the fact that even the flo
with completely distinct nonlinear parameters can phase s
chronize. In this article we clarify the mechanism of th
reduction of the network dynamics and investigate how
flows mutually decide their final nonlinearity. In Sec. II w
recapitulate some of our previous results. We in particu
discuss the condition for the smooth flow limit of the evol
tion of our network model. In Sec. III we present an intrig
ing observation that the final phase-synchronizing attrac
represent essentially the motion of the ‘‘center of mass’’
the network. The relative motions are swept away by
overwhelming coherence over the network as a result of
synchronization among the flows, which is reminiscent of
appearance of the order parameter in the superconducto
the Higgs condensation in particle physics. Most intere
ingly the nonlinearity of the final phase-synchronizing attra
tors is decided mutually among the flows by a simple de
sion rule so that the final phase-synchronizing attractors m
be controlled by the coupling parameters between the flo
and/or by the population ratios between unlike flows. In S
IV we conclude with some remarks on the flow-map cor
spondence.

II. THE PHASE SYNCHRONIZATION

First let us present a simple network of globally coupl
nonlinear flows. Our model is a natural extension of the g
bally coupled one-dimensional map lattice by Kaneko@2# to
the network of flows and to the higher dimensions. As
canonical example of nonlinear flow with more than o
variable, let us takeN Lorenz flows and set the paramete
for the first set of flows@„xi(t),yi(t),zi(t)…, i51, . . . ,N1#
2426 © 1997 The American Physical Society
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55 2427PHASE SYNCHRONIZATION AND NONLINEARITY . . .
in the chaotic regime and for the second s
@„xi(t),yi(t),zi(t)…, i5N111, . . . ,N11N2# in the periodic
regime. Typically we choose r (1)528, r (2)5300,

b(1)5b(2)5 8
3 , P(1)5P(2)510. At each time step all flows

first evolve independently via the flow equations,

xi~ t1Dt !5xi~ t !1P~yi2xi !Dt,

yi~ t1Dt !5yi~ t !1~2xizi1r ixi2yi !Dt,

zi~ t1Dt !5zi~ t !1~xiyi2bzi !Dt,

r i5H r ~1! for i51, . . . ,N1

r ~2! for i5N111, . . . ,N11N2 .

~ i51, . . . ,N! ~1!

Then, they interact with each other in only one dimension
their mean field. For instance, choosingx for this dimension,
the interaction is given by

xi←~12e!xi1e x̄, ~2!

wherex̄ is the mean field,

x̄5
1

N (
i51

N
xi , ~3!

ande is the coupling strength. The network evolves repe
ing this two-step process of nonlinear evolution~1! and in-
teraction~2!. We illustrate in Fig. 1 the iteration of the two

FIG. 1. A sample result of thex-coupled two distinct Lorenz
flows, r 1528, r 25300, and the couplinge50.3, u50.3, illustrat-
ing the iteration of the two steps; the evolution~the arrowed solid

line! and the interaction~the arrowed dashed line!. b5
8
3 , P510 for

both flows, and only the directly coupled variablesx1 and x2 are
exhibited. The flows~circles! are pulled to the mean field~solid bar!
at the fixed rate 12e by the interaction while the mean field is no
affected. For the first few iterations~left! the interaction violates the
smoothness of the flows. After sufficient focus~right! the smooth-
ness is realized. Note the change in the scale. The numbers a
the horizontal axis represent the iteration steps; each step t
Dt51024. The interaction is instantaneous, but to illustrate the
variance of the mean field, it is represented with half-width of t
Dt.
t

a

t-

steps schematically for thex variables in the case ofN52.
In the first step the flows evolve independently of each oth
from different values and with distinct nonlinearity. Thus th
nonlinear evolution in the first step acts in general as ade-
focusing lens. In the second step the interaction serves a
focusing lenswith a fixed rate 12e to the mean fieldx̄. A
few remarks are in order here. First, the interaction in t
second step preserves the value of the mean field,

1

N(
i

S ~12e!xi1
e

N(
j

xj D 5
1

N(
i

xi5 x̄. ~4!

This invariance of the mean field under the interaction pla
an important role in guaranteeing the continuous motion
the center of mass of the network as is discussed bel
Secondly, in our two-step evolution model, the mean fie
determines the next positions of the flows directly rather th
via the velocities of the flows. This is a crucial differenc
between our model and some similar network model@4,5#.
Only in our approach can the dynamics of the network
flows have a direct correspondence with the globally coup
map lattice@2#. Thirdly, although the sequence of nonlinea
evolution and interaction is similar with that in the couple
map lattice, we couple the variables in only one dimension
create the mean field and the variables in other dimensi
are evolving under the influence of this mean field. Hence
is legitimate to regard the mean fieldx(t) as the master sys-
tem and the other variables as the slave system@5,6#.

Now, let us derive a crucial condition for the smoothne
of the evolution of flows under Eqs.~1! and ~2!. For some
period the interaction in the second step pulls thexi variables
to their mean valuex̄ drastically at every iteration. But, if the
focusing is operated on them sufficiently frequently, all
them are soon focused around the mean valuex̄ and the
change of thexi becomes compatible with or smaller tha

ng
es
-

FIG. 2. The evolution ofx-coupled Lorenz flows in time:~a!
Globally coupled flows;N154 flows with r528 andN2516 flows

with r5300, both withb5
8
3 , P510. Flow 2 is scaled up by factor

3. ~b! Matrix-coupled two flows @see Eq. ~9!# at e50.3 and
u50.25@4/(4116)#. Both from random start. The flows in~a! first
form two clusters and passing the decision process~shadowed area!
they metamorphose into perfectly phase-synchronizing periodic
tractors similar to the final attractors of the matrix model in~b!.
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2428 55HAYATO FUJIGAKI AND TOKUZO SHIMADA
Dt. Then the invariance ofx̄ under the interaction guarantee
the smoothness of the evolution ofxi variables to the same
extent with the smoothness of other slave variables. Le
denote the time between two Poincare´ shots asT. The focus-
ing rate during this period may be estimated as

~12e!T/Dt'e2eT/Dt. ~5!

This should overcome the defocusing rate by the nonline
ity, which is exp (lmaxT) wherelmax is the largest eigen
value of the Floquet matrix. Thus the condition that focus
works on thexi variables sufficiently may be estimated

e
T

Dt
.lmaxT . ~6!

After this smooth flow limit is reached we can study t
response of the slave systemyi andzi under the influence o
the master systemx̄. For our case of the Lorenz flowslmax is
of the order of 1 and study the region 0.001<e<1, so we
needDt<1023. Of course suchDt is small enough so tha
the difference equation~1! approximates the differentia
equation. With this consideration we takeDt51024

throughout this article.
In Fig. 2~a! we show the evolution of the globally couple

N520 flows from random start whereN154 ~chaotic! and
N2516 ~periodic!. For the first period (0.2<t<1) the like
flows synchronize among themselves, forming two clust
and, passing the decision period (1<t<1.8), the two clus-
ters metamorphose into two final attractors. Let us verify t
the first synchronization (t<1) among like flows is suffi-
ciently robust so that theN flows really pass the decisio
stage as tightly bound two clusters. Such a test of the dyn
ics reduction fromN to 2 may be devised by constructing
model of two flows representing the two clusters, resp
tively. If such reduction really occurs, that is, if

~xi ,yi ,zi !5H ~x~1!,y~1!,z~1!! for i51, . . . ,N1

~x~2!,y~2!,z~2!! for i5N111, . . . ,N11N2

holds all the time, the evolution equation reduces to

x~ i !~ t1Dt !5x~ i !~ t !1P~y~ i !2x~ i !!Dt,

y~ i !~ t1Dt !5y~ i !~ t !1~2x~ i !z~ i !1r ~ i !x~ i !2y~ i !!Dt,

z~ i !~ t1Dt !5z~ i !~ t !1~x~ i !y~ i !2bz~ i !!Dt

~ i51,2!

and the interaction is simply

x~ i !←~12e!x~ i !1e x̄ ~ i51,2!, ~7!

wherex̄ is the population-ratio-weighted average,

x̄5hx~1!1~12h!x~2!, ~8!

with h5N1 /N and 12h5N2 /N. Now let us introduce an
N52 flow model with the evolution as given by Eq.~7! and
with an interaction in only one dimension,
s

r-

g

rs

t

-

-

x~1!←~12e2!x
~1!1e2x

~2!,

x~2!←~12e1!x
~2!1e1x

~1!, ~9!

with e15ue,e25(12u)e. This is a natural extension of th
one-way coupling model by Pecora and Carroll@6# to both-
way coupling with an interpolation parameteru. Now we
have the interaction described by Eqs.~7! and ~8! with the
population ratioh on one hand, and the interaction~9! with
the interpolation parameterh on the other hand. By simple
arithmetic we can show these agree with each other w
u5h @3#. That is, if the reduction fromN to 2 really occurs,
the evolution of the clusters thereafter, in particular the me
morphosis~decision!, should proceed just in the same wa
with the evolution of the simpleN52 matrix model with the
interpolation parameteru set at the value of the populatio
ratio h of the clusters.

In Fig. 2~b! we show the evolution of the matrix-couple
N52 model. The agreement between Figs. 2~a! and 2~b! is
remarkable. The flows of the global network in Fig. 2~a! take
some time for the formation of two clusters (0.2<t<1) and
their evolution thereafter into the final attractors is just t
same with that of the two flows in Fig. 2~b!, with u adjusted

at the population ratioh(5 4
2050.2) of theN520 flows in

Fig. 2~a!.
Till now we have for simplicity divided the flows into two

groups, one in the chaotic and the other in the periodic
gime. Everything goes the same way with the other com
nations, chaotic and chaotic but with different chaoticne
and so on. Furthermore we have checked the case of t
groups, four groups, . . . , N groups (N flows each with its
own nonlinearity!. The flows again first synchronize amon
like flows forming clusters~except for the last case!, and
then metamorphose into final phase-synchronizing th
four, . . . ,N attractors. Now let us proceed to the target
this article, namely, the analysis of the nonlinearity decis
in the metamorphosis.

III. THE METAMORPHOSIS
AND NONLINEARITY DECISION

Since we have verified the reduction of the dynamics
the flows to the dynamics of clusters, we hereafter mai
consider the nonlinearity decision between two flows~two
clusters! with distinct nonlinearity. This is the study of th
second reduction fromN52 to 1. ~Every discussion below
in particular the extraction of the center of mass degree
freedom, can be extended to the case of generalN. Recall the
classical mechanics where the two body problem has all
essential ingredients of theN body problem apart from the
more subtle case of integrability.! Previously we reported
that the population ratioh5N1/N in the globally coupled
network of flows, or equivalently the interpolation parame
u in the matrix-coupled two flows, serves as a control p
rameter of the nonlinearity of the final attractors. Now w
show that there exists a simple rule of the nonlinearity de
sion which is valid for a wide class of nonlinear flows.

In the limit u50 or 1 our matrix model reduces to pre
cisely the master-slave model proposed by Pecora and
roll in their pioneering work of the chaos synchronizatio
@6#. ~In preparing this article we find that these authors a
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55 2429PHASE SYNCHRONIZATION AND NONLINEARITY . . .
suggested in another paper@7# the study of ‘‘large paramete
variation’’ which is precisely the target of our work.!

At u51 the flow ~cluster! 1 wins and atu50 the flow
~cluster! 2 wins the decision game@3,6#. Thus the rule for
u'0 andu'1 may be schematically expressed

F~r ~1!! ^F~r ~2!!uu→H A~r ~1!! if u'1

A~r ~2!! if u'0, ~10!

with obvious symbols. For instance,A(r (1)) means two
phase-synchronizing periodic attractors with nonlinearity
r (1). Surprisingly, we find that by adjusting the couplingu
appropriately, it is possible to create from two chaotic flo
the phase-synchronizing two periodic attractors

F~C,r ~1!! ^F~C,r ~2!!→A~P!

or even to create from the coupling of the two periodic flo
the phase-synchronizing two chaotic attractors

F~P,r ~1!! ^F~P,r ~2!!→A~C!.

Here we added the symbolC or P as a memento of the
nonlinearity~chaotic or periodic! of the single flow~cluster!
F at the value ofr ( i ) written to the right of it. We assert tha
the nonlinearity decision rule in general is

F~r ~1!! ^F~r ~2!!uu→A„r ~r ~1!,r ~2!,u!…,

r ~r ~1!,r ~2!,u!' r̄[ur ~1!1~12u!r ~2!. ~11!

The rule is as follows. First, the final two phas
synchronizing attractors are modulo a scale factor the s
with the attractor of the original single flow with new non
linearity. Second, the decided nonlinearity parameter va
r (r (1),r (2),u) is essentially given by the weighted avera
r̄ . ~For the network of the flows with two groups of distin
nonlinearity it suffices to replaceu by the populationh. The
decision rule holds even for the negativeu or for u>1
though for theh such an extension is immaterial.! This
means that by varying the parameteru the whole pattern of
the attractor of the single flow in the rangerP@r (1),r (2)# can
be produced. The decision rule~11! is so simple that things
might look trivial. However, we should note that the fact th
the two flows~two clusters! with completely distinct nonlin-
earity synchronize in phase is already a surprise and
averaging or interpolating the nonlinearity parameters i
completely new notion.

Let us now present evidence for the decision rule. In F
3 we show the Poincare´ map of the coupled Lorenz flows fo
the whole range of the couplingu with both flows set in the
chaotic regime (r (1)528 andr (2) 5200!. Figures 3~a! and
3~b! are for thex-coupled case and for they-coupled case,
respectively, and these should be compared with the P
caré map of a single Lorenz flow in Fig. 3~c! for rP
@28,200#. In Figs. 3~a! and 3~b! the clouds of lower~upper!
points represent the Poincare´ section for the flow 1~2!. At
any value ofu the lower and upper clouds agree with ea
other after a scaling as the result of the phase synchron
tion. Aroundu51(0) themaster flow is the system 1~2! and
around these regions the Poincare´ map of the final attractors
t

s

e

e

t

at
a

.

n-

a-

certainly agrees with the Poincare´ map of the master flow in
Fig. 3~c! as the natural consequence of the rule~10!. More
interestingly we find in Fig. 3~a! an outstanding periodic
window around 0.2<u<0.3 and also many other smalle
windows. This shows that two chaotic flows have metam
phosed into phase-synchronizing periodic attractors at
tain values ofu. The spectrum of the periodic windows i
u in Fig. 3~a! precisely agrees with the spectrum of the wi
dows of the single flow inr̄ in Fig. 3~c!. Furthermore thez
distributions of the clouds in Fig. 3~a! at anyu agree with the
z distributions in Fig. 3~c! at the corresponding value ofr̄ ,
which means that the final phase-synchronizing attractors
nothing but the attractor of the single flow at the correspo
ing r̄ . Summing up we observe that in the case of thex
coupling the extended decision rule~11! holds precisely in
the form

F~C,r ~1!528! ^F~C,r ~2!5200!uu

→A„r̄528u1200~12u!…. ~12!

Notably the spectrum of the periodic windows in Fig. 3~b! is
almost the same as that in Fig. 3~c! but the positions of the
windows in u are shifted to the smalleru direction about
0.15. This on one hand reveals that the decision rule hold
general approximately and on the other hand indicates
nontriviality of the rule. The agreement in the Lyapunov e
ponents between Figs. 3~d!, 3~e! ~coupled flows!, and 3~f! ~a
single flow! also confirms the extended decision rule.

Now let us clarify why the decision rule holds. We divid
the argument into items.

~1! Decomposition of the variables. When the final phase
synchronizing attractors are formed after the metamorpho
the variablesx(1) andx(2) have already focused around th
mean valuex̄ while the other variablesy(1),z(1),y(2), and
z(2) evolve nonautonomously under the influence ofx̄. In
order to analyze their motion let us introduce the ‘‘center
mass’’ variables and the relative variables just as in the c
sical mechanics. That is,

~ x̄,ȳ,z̄!5u~x~1!,y~1!,z~1!!1~12u!~x~2!,y~2!,z~2!!,

~xR ,yR ,zR!5~x~1!,y~1!,z~1!!2~x~2!,y~2!,z~2!!. ~13!

Some explanation of the term ‘‘center of mass’’ is in ord
here. We have definedx̄ in Eq. ~3! for the network of flows
which leads tox̄ in Eq. ~8! for the two clusters~and thex̄
above via the identificationu5h). Thesex̄ might have been
called thex coordinate of the center of mass ofN flows and
that of two clusters, respectively, with an assignment o
unit mass to each flow. However, we carefully called the
the mean field and the population-ratio-weighted avera
respectively, since they are concerned with only one of
dimensions. Here we are newly definingȳ and z̄ in accord
with x̄ to define a vector (x̄,ȳ,z̄). Hence we may now cal
this the center of mass. We admit that the decomposi
above is really a simple algebraic redefinition of the va
ables but we use the termcenter of masshereafter in order to
emphasize the conceptual jump that we consider not only
active variablex̄ ~active in the sense that it is used in th
model to impose the focusing on the flows! but also fictitious
ȳ andz̄ together. We are aware that it is rather radical to t
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FIG. 3. The Poincare´ map of two chaotic Lorenz flows (r 1528, r 25200, b5
8
3 , P510) coupled by a matrix withe50.3 andu

P@0,1# @see Eq.~9!#, ~a! x coupling,~b! y coupling, to be compared with the Poincare´ map of the single flowrP@200,28#) in ~c!. ~For the
y coupling the map of flow 2 is shifted upwards to avoid the overlap.! The maps are sampled by the conditionsdz/dt50 and
d2z/dt250. The periodic window spectrum of~a! @~b!# agrees perfectly~approximately! with that of ~c!. The corresponding Lyapunov
exponents in~d!, ~e!, and~f! confirm the observation. See the decision rule~12!.
lo
e

about the center of the mass of the attractors but this ana
actually turns out vital in the discussion below. We also d
composer (1) and r (2) as

r̄5ur ~1!1~12u!r ~2!,
gy
-

Dr5r ~1!2r ~2!.

~2! The motion of the center of mass. With these new
variables we can rewrite Eq.~1! as
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x̄← x̄1P~ ȳ2 x̄!Dt,

ȳ← ȳ1~2 x̄ z̄1 r̄ x̄!Dt1u~12u!~2xRzR1xRDr !Dt,
~14!

z̄← z̄1~ x̄ ȳ2bz̄!Dt1u~12u!xRyRDt.

The flows ~clusters! evolve under the iteration of the two
step process of the evolution and interaction. For thex cou-
pling thexR becomes quickly of the order ofDt in the itera-
tion. Taking xR→0 in Eq. ~14! we find that the terms
proportional tou(12u) all vanish and the evolution of th
center of the mass (x̄,ȳ,z̄) in the first step reduces to th
evolution of the single Lorenz flow with the nonlineari
parameterr̄ . As for the second step the invariance conditi
~4! comes into play. It assures that the center of the m
( x̄,ȳ,z̄) is not affected by the interaction. Hence th
( x̄,ȳ,z̄) evolves only by just the first step in each iteratio
Thus the center of the mass of the two clusters and the ce
of mass of theN flows should form the Lorenz attractor wit
nonlinearity r̄ .

~3! The motion of phase-synchronizing orbits and the
cision rule. The final two attractors (x(1),y(1),z(1)) and
(x(2),y(2),z(2)) are phase synchronizing with each oth
Hence their orbits must agree with the orbits of their cen
of mass modulo a scale factor. Hence the final attrac
must be those of the single Lorenz flow with nonlinear
r̄ . This is the explanation of the precise decision rule for
x-coupling case.

~4! The reduction from N52 to 1. The original degree of
freedom of two flows~clusters! was 6, and afterxR→0 it
becomes 5, thex̄,ȳ,z̄, and the rotation and expansion arou
the origin in thexR2yR plane.

The phase synchronization, namely, the synchroniz
motion around similar orbits, implies that the last two fre
doms are essentially also lost. This is clearly seen in
Lyapunov exponents in Figs. 3~d! and 3~e!. There are six
eigenvalues among which three precisely agree with the
ponents of the single Lorenz flow in Fig. 3~f! in the whole
range ofr̄ . They change sensitively with the variation of th
coupling u and represent the active degree of freedom
( x̄,ȳ,z̄). The other exponents do not vary withu and repre-
sent the nonactive degree of freedom. From the nonauto
mous evolution equations for (xR ,yR ,zR) we can easily
verify the independence of their Lyapunov exponents fr
u.

~5! Generic cases. In the above argument we used the fa
that xR is focused to nearly zero in thex coupling. This
removes the terms proportional tou(12u) and reduces Eq
~14! to the evolution equation of the single Lorenz flow
r̄ . The sufficient condition under which the same argum
works in the generic case is that the evolution equation d
not have nonlinear terms in other variables than the one c
sen for the coupling. In short the slave dimensions mus
linear among themselves. In the case of the ab
x-coupled Lorenz system, the nonlinear terms arexz and
xy, both of which are linear iny andz. Hence the sufficient
condition is satisfied and the decision rule holds precis
Actually the synchronization of the coupled flows can
realized in general when the Lyapunov exponents for
driven system are less than zero@6#. For the Lorenz flows we
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can construct the coupled flow network not only by the co
pling in x but also iny. For they-coupled Lorenz flows, the
xz term does not satisfy the sufficient condition. However,
we find in the numerical calculation, the nonlinearity dec
sion is approximately made following the rule in Eq.~11!
with some negotiation~the quoted shift by; 0.15!. This can
be understood as due to the low nonlinearity in the sla
dimensions. We have numerically tested various known n
linear flows. In all cases the decision rule holds precise
when the sufficient condition is satisfied, and approximate
otherwise so far as the synchronization occurs. For instan
the Rössler flows can be synchronized by they coupling.
The nonlinear termxz violates the sufficient condition and
we observe the negotiated decision~see Fig. 4 below!. The
Brusselator can be synchronized by bothx and y coupling.
The nonlinear termx2y satisfies the condition for thex cou-
pling but violates it for they coupling. We indeed observe
that the rule holds precisely in thex coupling but approxi-
mately in they coupling.

Let us present two more figures in order to demonstr
how the decision rule works and to indicate the feasibility
the technical application of it. In Fig. 4 we choose th
y-coupled Ro¨ssler model which exhibits the negotiated dec
sion. The bottom box represents the Lyapunov exponent
the rangecP@2,6.5#. The other parametersa andb are both
fixed at 0.2. We pick two flows, the flow 1 withc53.5 and
the flow 2 withc55.3.

Before the coupling both flows are in the periodic regim
as shown in the middle two boxes. By the coupling wi
e50.3 andu50.2 they should metamorphose following th
rule:

FRössler~P,c~1!53.5! ^FRössler~P,c~2!55.3!uu50.2→A~c!,

~15!

FIG. 4. An illustration of the decision rule in Eq.~15!. We pick
two Rössler flowsc153.5,c255.3,a5b50.2; the attractors are
both periodic~middle two boxes!. The coupling withe50.3 and
u50.2 makes chaotic phase-synchronizing two attractors~top two
boxes!.



th

xe
s

o

se

e-
f

the
the
yn-

to
by
ors
he
run
th

w

on

re

Lo-
f-
th
-

s
rs
nd
lin-
into
ially
n-
sion

ar
her
is
go-
be-
s
ch-

rk
he
ct
me
oin-
to

y
fter
this
the
he

he

led

ttl
on

2432 55HAYATO FUJIGAKI AND TOKUZO SHIMADA
where FRössler represents the Ro¨ssler flow, and
c' c̄53.530.215.330.854.94. The single flow at
c'4.94 is chaotic, as can be seen in the bottom box with
maximum Lyapunov exponentlmax50.0693. The final
phase-synchronizing attractors shown in the top two bo
are indeed chaotic withlmax50.071 and the decision rule i
respected by two Ro¨ssler flows well even in they coupling.

In Fig. 5 we exhibit the phase-synchronizing attractors
the y-coupled Lorenz flows (e50.3) controlled by the deci-
sion rule

FLorenz~C,r ~1!550! ^FLorenz~C,r ~2!5200!uu

→A„r ~r ~1!,r ~2!,u!…,

r ~r ~1!,r ~2!,u!' r̄[ur ~1!1~12u!r ~2!, ~16!

whereFLorenz represents the Lorenz flow.@This supplements
our previous analysis of the simpler ca
FLorenz(C,r528)^FLorenz(P,r5300)uu . See Fig. 2 of@3#.#
Actually this figure is a record of controlling the phas
synchronizing attractors by varyingu by pressing the key o

FIG. 5. A sample of control of phase-synchronizing two coup
attractors~solid and dashed lines,e50.3) by the couplingu. Flows

1 and 2 are both chaotic.r 1550, r 25200, b5
8
3 , P510. Re-

sponding to the quick change of the coupling depicted in the li
box they swiftly decide their mutual nonlinearity by the decisi
rule ~16!. At the rest periodtP@16.2,28# they freely make periodic
attractors~the middle profile!.
e

s

f

a personal computer. In order to avoid the overlap of
trajectories the attractors are constantly scrolled down in
display. Most intriguing is the robustness of the phase s
chronization under the rapid variation of the couplingu. See
the change ofu during the period tP@16,16.2# and t
P@28,28.2# reproduced in the little box. We tried a game
produce the periodic attractors from two chaotic flows
control. Watching the two phase-synchronizing attract
dancing in the display it was quite easy to figure out t
value ofu necessary, which was around 0.2. Thus in the
for this figure we let the two flows move around freely wi
u fixed at 0.2 for the periodtP@16.2,28#. The orbits in the
middle of the figure are the resulting periodic attractors.

The single Lorenz flow has a prominent periodic windo
around r5160. The decision rule gives
r̄550u1200(12u)'170 foru50.2 and we have certainly
caught this window in the control. How much is the decisi
rule negotiated by they-coupled Lorenz flows? The
Lyapunov exponents of these attractors a
(0,21.46,22.93,28.69,213.6,2326) and the underlined
three exponents agree with three exponents of the single
renz flow atr5165.6. While the precise rule under the su
ficient condition dictates the formation of the flows wi
r5170 the actual attractors haver5165.6. Thus the nego
tiation is 170→165.6.

IV. CONCLUSION

The dynamics of a network of globally coupled flow
with distinct nonlinearity is reduced first into that of cluste
formed by like flows by synchronization among them a
then further reduction occurs by the decision of the non
earity among the clusters. The clusters metamorphose
the final phase-synchronizing attractors which are essent
the attractor of a single flow with mutually decided nonli
earity among the clusters. We have shown that the deci
rule can be written in a simple form in Eq.~11!. The suffi-
cient condition for the decision rule is that the nonline
terms of the flow equation are linear in the variables ot
than the one chosen for the coupling. Even if the condition
not satisfied the decision rule is respected with some ne
tiation as long as the synchronization can be realized
tween the flows~clusters!. We have shown ample example
for both cases and have demonstrated the feasibility of te
nical application of the rule.

We close this article by pointing out that our netwo
model of globally coupled flows may be closely linked to t
network of globally coupled maps. Recall the intriguing fa
that the flow of a dissipative system may be in the sa
universality class with the map essentially because the P
carié section of the flow becomes one dimensional due
dissipation@8#. We have used the condition~6! to determine
Dt so that the focusing~2! is applied to the system frequentl
enough and that the smooth flow limit is guaranteed a
Dx becomes very small. Thus the analysis presented in
article is the dynamics in the strong focus regime where
dynamical reduction overwhelms the network. If, on t
other hand,e is extremely small, as small asO(Dt), the
effect of interaction will not affect the smoothness of t
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orbits, and the nonlinearity of the flows and the cohere
due to the interaction via the mean field will make a sub
balance on the Poincare´ section. In such a weak focus re
gime, the network of flows will mimic the network of map
ev
d

e
e
on the Poincare´ section. In a preliminary analysis of th
coupled Duffing oscillators in the universality class of t
May map, we indeed observed the formation of spatial cl
ters. An extensive study in this regime is underway.
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